If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=70=5
We move all terms to the left:
x^2-(70)=0
a = 1; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·1·(-70)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{70}}{2*1}=\frac{0-2\sqrt{70}}{2} =-\frac{2\sqrt{70}}{2} =-\sqrt{70} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{70}}{2*1}=\frac{0+2\sqrt{70}}{2} =\frac{2\sqrt{70}}{2} =\sqrt{70} $
| 3c-4c+1=5c+2+ | | 6p-18=5p-7 | | 4x+1-×+10=29 | | 3.14=7*1-2y | | -2+x/18=1 | | (x•2)=6 | | 6+17+2x=15+x | | 1,2 | | 2x^2+0x-28=0 | | -1/4=x/20 | | x•2=6 | | 4x-2(x+1)=3x | | 6+4(p=3) | | 15-2x²=3x | | 3y2=-4y+16 | | 4(6x-8)=-24x-32 | | 2(p-1)=23 | | 9r+14=0 | | q/8+-18=-15 | | -6(y+82)=30 | | 64x+72=55x+99 | | -8g+19=-37 | | (4m=8) | | 15=2-7+2x+3x | | 3/4u=3 | | 83=p/8+78 | | 7(z+8)=84 | | (4k-8)=(4k-8) | | -41=4(5x-6)+3 | | 13=-14k+9 | | -3d+8d-5d= | | 4×+1-x+10=29 |